

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Набережные Челны (8552)20-53-41 Саратов (845)249-38-78

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес для всех регионов: pcr@nt-rt.ru || http://promeco.nt-rt.ru/

ПЕРЕНОСНОЙ МНОГОКОМПОНЕНТНЫЙ ГАЗОАНАЛИЗАТОР «ПОЛАР» и «ПОЛАР» исполнения 7.X, 8.X, «Универсал»

ПЕРЕНОСНОЙ МНОГОКОМПОНЕНТНЫЙ ГАЗОАНАЛИЗАТОР «ПОЛАР»

/ОДНОВРЕМЕННОЕ ИЗМЕРЕНИЕ ДО 8-МИ ГАЗОВ В ПРОМЫШЛЕННЫХ ВЫБРОСАХ/

Допущен к применению в Республиках Казахстан и Беларусь

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Газоанализатор «Полар», в зависимости от исполнения предназначен для:

- измерений объемной доли кислорода (O₂);
- измерений массовой концентрации или объемной доли оксида углерода (CO), оксида азота (NO), диоксида азота (NO₂), сернистого ангидрида (SO₂), сероводорода (H₂S), аммиака (NH₃) и углеводородов по метану (CH₄), пропану (C₃H₈) или гексану (C₆H₁₄) в отходящих газах стационарных и передвижных источников промышленных выбросов;
- измерений или определения расчетным методом объемной доли диоксида углерода (СО₂);
- определения расчетным методом массовой концентрации суммы оксидов азота (NO_x);
- измерений температуры и избыточного давления (разрежения) газового потока в точке отбора проб; измерений дифференциального давления;
- индикации температуры окружающей среды;
- определения расчетным методом скорости и объемного расхода газового потока при работе в ком плекте с напорной пневмометрической трубкой типа Пито или НИИОГАЗ;
- определения расчетным методом технологических параметров топливосжигающих установок: коэффициента избытка воздуха (альфа), коэффициента потерь тепла и КПД сгорания топлива;
- определения расчетным методом массового выброса загрязняющих веществ.

Область применения газоанализатора:

- контроль стационарных и передвижных источников промышленных выбросов с целью определения массового выброса или массовой концентрации загрязняющих веществ (ЗВ) в целях экологического контроля (государственного и производственного);
- испытания котлоагрегатов для определения влияния режимных факторов на массовую концентрацию ЗВ, а также определения оптимального значения коэффициента избытка воздуха при работе на разных видах топлива и разных нагрузках (составление режимных карт);
- испытания топочно-горелочных устройств с целью оптимизации режимов горения;
- испытания газоочистного оборудования с целью определения снижения выбросов 3В.

Типы контролируемых установок:

- стационарные паровые и водогрейные котельные установки;
- промышленные установки сжигания; стационарные газотурбинные установки (ГТУ);
- стационарные двигатели внутреннего сгорания; судовые двигатели.

ОСНОВНЫЕ ПРЕИМУЩЕСТВА

Новое исполнение «Универсал»

Газоанализаторы «Полар», исполнения «Универсал», в которых по каналам CO, NO и SO_2 устанавливаются по два разнодиапазонных измерительных датчика, обеспечивают высокую точность измерений как при контроле «высоких», так и «низких» концентраций определяемых компонентов и могут применяться для контроля выбросов практически всех типов топливосжигающих установок, работающих на любых видах топлива (включая природный газ) и эксплуатирующихся на предприятиях теплоэнергетики, нефтегазодобывающей, нефтегазоперерабатывающей, нефтехимической, химической, металлургической, целлюлозно-бумажной, цементной и других отраслей промышленности.

Высокая точность измерений

Благодаря использованию в газоанализаторах «Полар» датчиков с высокой чувствительностью, измерение концентраций определяемых компонентов выполняется с максимально возможной для электрохимического метода точностью (пределы относительной погрешности ± 5 %).

Взрывозащищенное исполнение

Для предприятий нефтегазодобывающей и нефтегазоперерабатывающей отраслей промышленности выпускаются специальные взрывозащищенные модификации газоанализатора - «Полар Ex» и «Полар Ex T».

Работа на морозе до -40 °C

Для выполнения измерений при отрицательных температурах воздуха выпускаются специальные модификации газоанализатора - «Полар Т» и «Полар Ех Т», имеющие обогреваемый корпус и предназначенные для эксплуатации при температуре окружающей среды до минус 40 °C.

Новые исполнения 7.X и 8.X. Измерение CO₂ и углеводородов

Газоанализаторы «Полар» могут оснащаться инфракрасными оптическими датчиками, позволяющими измерять содержание CO_2 и углеводородов в пересчете на метан (CH_4), пропан (C_3H_8) или гексан (C_6H_{14}). При этом в исполнения газоанализаторов - 7.Х и 8.Х (семь и восемь каналов измерений) датчики CO_2 и CH устанавливаются в дополнение к датчикам CO_2 , CO_3 , CO_4 , CO_5 , CO_6 , CO_7 , CO_8 , CO_8 , CO_9 и $CO_$

Определение скорости и объемного расхода газового потока

При дополнительном оснащении напорной пневмометрической трубкой типа Пито с помощью газоанализатора «Полар» могут определяться скорость и объемный расход (м³/сек) газового потока.

Расчет массового выброса

В газоанализаторе «Полар» имеется дополнительная сервисная функция, позволяющая по результатам выполненных инструментальных измерений автоматически рассчитать массовый выброс загрязняющих веществ (г/сек).

Статистическая обработка результатов

Для соблюдения требований по представлению результатов при экологическом контроле в газоанализаторе «Полар» имеется возможность сбора и статистической обработки результатов измерений с вычислением средних, минимальных и максимальных значения за заданный интервал времени.

Документирование результатов

Внешний компактный ИК-термопринтер, поставляемый по дополнительному заказу, позволяет распечатывать протоколы измерений как непосредственно во время проведения измерений, так и после их завершения при считывании данных из памяти прибора.

Память данных

Встроенная память данных газоанализатора рассчитана для постоянного хранения 1600 записей. Впоследствии, записанные данные могут быть распечатаны на внешнем ИК-термопринтере или переданы на персональный компьютер в виде файла формата HTML через USB-порт.

Принадлежности и аксессуары

По желанию заказчика прибор может комплектоваться пробоотборными зондами и напорными пневмометрическими трубками типа Пито различной (от 300 до 2000 мм) длины, а также дополнительным предварительным противопылевым металлокерамическим фильтром.

В комплект поставки могут также входить градуировочные газовые смеси в баллонах под давлением, предназначенные для периодической градуировки (корректировки показаний) газоанализатора в процессе эксплуатации.

конструкция и принцип действия

Газоанализатор «Полар» представляет собой переносной автоматический мно гофункциональный многокомпонентный прибор, оснащенный средствами отбора и подготовки пробы к анализу.

Конструктивно газоанализатор «Полар» выполнен в прочном пластиковом корпу се, на лицевую панель которого выведе ны дисплей, клавиатура и все коммута ционные разъемы и штуцера. Измери тельная информация отображается на жидкокристаллическом графическом дисплее, оснащенном подсветкой. Элек тропитание газоанализатора может осу ществляться как от встроенной переза ряжаемой аккумуляторной батареи, так и от сети переменного напряжения 220 В/50 Гц. Отбор проб выполняется с помощью встроенного пробоотборного насоса.

Принцип действия газоанализатора основан на применении комплекта электрохимических и оптических датчиков для измерения содержания газовых компонент анализируемой пробы, термоэлектрического преобразователя (термопары) типа «К» для измерения температуры газового потока, дифференциального полупроводникового датчика для измерения избыточного давления (разрежения) и в комплекте с пневмометрической напорной трубкой типа Пито или НИИОГАЗ для определения скорости и объемного расхода газового потока.

БАЗОВЫЕ МОДИФИКАЦИИ

Газоанализаторы «Полар» выпускаются в четырех базовых модификациях - «Полар», «Полар Т», «Полар Ех» и «Полар Ех Т, отличающихся друг от друга температурным диапазоном эксплуатации:

- модификации «Полар» и «Полар Ex» от 0 °C до 45 °C;
- модификации «Полар Т» и «Полар Ex Т» от минус 40 °C до плюс 45 °C;

и исполнением прибора в части взрывозащиты:

- модификации «Полар» и «Полар Т» обыкновенное;
- модификации «Полар Ex» и «Полар Ex T» взрывозащищенное (за исключением исп. «Универсал»).

СТАНДАРТНЫЕ ИСПОЛНЕНИЯ

Газоанализаторы «Полар» выпускаются в нескольких стандартных исполнениях, отличающихся друг от друга перечнем определяемых компонентов и диапазонами измерений.

Примечания:

- Исполнение прибора по перечню определяемых компонентов и диапазонам измерений согласовывается с каждым конкретным заказчиком на этапе оформления заказа в зависимости от характеристик его измерительных задач.
- В случае если стандартные исполнения не удовлетворяют предъявляемые к прибору требования, возможно изготовление специальных исполнений газоанализатора.
- В процессе эксплуатации газоанализаторов во время прохождения приборами сервисного обслуживания и поверки на предприятии-изготовителе имеется возможность изменения исполнения газоанализатора путем дополнительной установки (демонтажа) измерительных датчиков и перекалибровки прибора по газовым смесям с изменением диапазонов измерений.

Стандартные исполнения по перечню определяемых компонентов

		Определяемые компоненты				
Испол-	Количество измеритель-	изме	no.c=::::			
нение	ных каналов	• · · · · · · · · · · · · · · · · · · ·	с помощью оптических	рассчиты- ваемые		
		ческих датчиков	датчиков			
1	1	O ₂	_	_		
2.1	2	O ₂ -CO	_	CO ₂		
2.2	2	O ₂	CO ₂	_		
2.3	2	O ₂	CH	_		
3.1	3	O ₂ -CO-NO	-	CO ₂ -NO _X		
3.2	3	O ₂ -CO	CO ₂	_		
3.3	3	O ₂ -CO	CH	CO ₂		
3.4	3	O ₂	CO ₂ -CH	_		
3.5	3	O ₂	CH-CH	_		
4.1	4	O ₂ -CO-NO-NO ₂	-	CO ₂ -NO _X		
4.2	4	O ₂ -CO-NO-SO ₂	_	CO ₂ -NO _X		
4.3	4	O ₂ -CO-NO	CO ₂	NO _X		
4.4	4	O ₂ -CO-NO	CH	CO ₂ -NO _X		
4.5	4	O ₂ -CO	CO ₂ -CH	_		
4.6	4	O ₂ -CO	CH-CH	CO ₂		
5.1	5	O ₂ -CO-NO-NO ₂ -SO ₂	_	CO ₂ -NO _X		
5.2	5	O ₂ -CO-NO-SO ₂ -H ₂ S	_	CO ₂ -NO _X		
5.3	5	O ₂ -CO-NO-NO ₂ -NH ₃	_	CO ₂ -NO _X		
5.4	5	O ₂ -CO-NO-NO ₂	CO ₂	NO _X		
5.5	5	O ₂ -CO-NO-NO ₂	CH	CO ₂ -NO _X		
5.6	5	O ₂ -CO-NO-SO ₂	CO ₂	NO _X		
5.7	5	O ₂ -CO-NO-SO ₂	CH	CO ₂ -NO _X		
5.8	5	O ₂ -CO-NO	CO ₂ -CH	NO _X		
5.9	5	O ₂ -CO-NO	CH-CH	CO ₂ -NO _X		
6.1	6	O ₂ -CO-NO-NO ₂ -SO ₂ -H ₂ S	-	CO ₂ -NO _X		
6.2	6	O ₂ -CO-NO-NO ₂ -SO ₂	CO ₂	NO _X		
6.3	6	O ₂ -CO-NO-NO ₂ -SO ₂	CH	CO ₂ -NO _X		
6.4	6	O ₂ -CO-NO-SO ₂ -H ₂ S	CO ₂	NO _X		
6.5	6	O ₂ -CO-NO-SO ₂ -H ₂ S	CH	CO ₂ -NO _X		
6.6	6	O ₂ -CO-NO-NO ₂ -NH ₃	CO ₂	NO _X		
6.7	6	O ₂ -CO-NO-NO ₂ -NH ₃	CH	CO ₂ -NO _X		
6.8	6	O ₂ -CO-NO-NO ₂	CO ₂ -CH	NO _X		
6.9	6	O ₂ -CO-NO-NO ₂	CH-CH	CO ₂ -NO _X		
6.10	6	O ₂ -CO-NO-SO ₂	CO ₂ -CH	NO _X		
6.11	6	O ₂ -CO-NO-SO ₂	CH-CH	CO ₂ -NO _X		

НОВЫЕ ИСПОЛНЕНИЯ 2015 года (№ 61036-15 в Госреестре СИ РФ):

7.1	7	O ₂ -CO-NO-NO ₂ -SO ₂ -H ₂ S	CO ₂	NO _X
7.2	7	O ₂ -CO-NO-NO ₂ -SO ₂ -H ₂ S	CH	CO ₂ -NO _X
7.3	7	O ₂ -CO-NO-NO ₂ -SO ₂	CO ₂ -CH	NO _X
7.4	7	O ₂ -CO-NO-NO ₂ -SO ₂	CH-CH	CO ₂ -NO _X
7.5	7	O ₂ -CO-NO-SO ₂ -H ₂ S	CO ₂ -CH	NO _X
7.6	7	O ₂ -CO-NO-SO ₂ -H ₂ S	CH-CH	CO ₂ -NO _X
7.7	7	O ₂ -CO-NO-NO ₂ -NH ₃	CO ₂ -CH	NO _X
7.8	7	O ₂ -CO-NO-NO ₂ -NH ₃	CH-CH	CO ₂ -NO _X
8.1	8	O ₂ -CO-NO-NO ₂ -SO ₂ -H ₂ S	CO ₂ -CH	NO _X
8.2	8	O ₂ -CO-NO-NO ₂ -SO ₂ -H ₂ S	CH-CH	CO ₂ -NO _X
<mark>Универ-</mark> сал	8-11	O ₂ -CO _{ни3} -NO _{ни3} -NO ₂ -SO _{2 ни3} - CO _{выс} -NO _{выс} -SO _{2 выс} -(H ₂ S)	(CO ₂)-(CH)-(CH)	(CO ₂)-NO _X

Примечания:

- Отличительной особенностью исполнения «Универсал» является наличие двух комплектов измерительных датчиков по каналам СО, NO и SO₂ (один из которых предназначен для измерения «низких», а другой «средних» и «высоких» концентраций определяемых компонентов).
- Градуировка канала измерений углеводородов (СН) выполняется по метану (С $_4$), пропану (С $_3$ Н $_8$) или гексану (С $_6$ Н $_1$ 4). Градуировочный компонент согласовывается с заказчиком на этапе оформления заказа.

Стандартные исполнения по диапазонам измерений

Испол-		Измерительный канал, диапазон измерений, мг/м ³					
нение	O ₂	CO	NO	NO ₂	SO ₂	H ₂ S	NH ₃
1		0-500	0-400	0-100	0-300	0-100	
2		0-5000 *	- U -1 UU	0-100	0-300	0-100	_
3		0-5000 *	0-2000	0-100	0-5000	0-500	0-1000
4		0-3000	0-2000	0-500	0-15000	0-1000	0-1000
5		0-5000 *	0-4000	0-500	0-5000	0-500	
6		0-3000	0-4000	0-1000	- 0-3000	0-300	
7	0.25	0-12500 *	0-4000	0-500	0-5000	0-500	
8	0-25	0-12300	0-1000	0-300	0-15000	0-1000	
9	- %(об. д.)	0-12500 *	0-4000	0-1000	0-15000	0-1000	
10		0-50000	- 0 -1000	0-1000	0-13000	0-1000	_
11		0-100000	_	_	_	_	
12 (Уни)		0-500 и	0–400 и	0-100	0–300 и		
13 (Уни)		0-5000 *	0-2000	0-500	0-5000	0-500	
<mark>14 (Уни)</mark>		0-500 и	0–400 и	0-500	0–300 и	1 0-300	
<mark>15 (Уни)</mark>		0-12500 *	0-4000	0-1000	0-15000		

Примечания:

- Для диапазонов измерений СО, отмеченных знаком «*», возможна установка датчика СО с компенсацией по водороду (H_2), что особо оговаривается заказчиком на этапе оформления заказа.
- Диапазон измерений канала CO_2 (0-20, 0-30 или 0-60 % (об.)) не зависит от указанных в таблице исполнений и согласовывается с заказчиком дополнительно на этапе оформления заказа.

ОСНОВНЫЕ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Определяемый	Принцип Диапазон измерений измерений	Пределы допускаемой основной погрешности		
компонент	измерении	измерении	абсолютной	относительной
Кислород (O₂)	электрохимический датчик	0–25 % (об.)	±0,2 % (oб.)	-
Оксид углерода (CO)		0-500 мг/м ³	±2,5 мг/м ³ (0–50 мг/м ³)	±5 % (50-500 мг/м³)
или ^{2) 3)}		0-5000 мг/м ³	±6 мг/м ³ (0–120 мг/м ³)	±5 % (120–5000 мг/м³)
или ^{2) 3)}	электрохимический датчик	0-12500 мг/м ³	±12 мг/м ³ (0–240 мг/м ³)	±5 % (240–12500 мг/м³)
или ²⁾		0-50000 мг/м ³	±60 мг/м ³ (0–1200 мг/м ³)	±5 % (1200–50000 мг/м³)
или ²⁾		0-100000 мг/м ³	±120 мг/м ³ (0–2400 мг/м ³)	±5 % (2400-100000 мг/м³)
	только для исполнен	ия «Универсал»:		
или ^{2) 3)}	электрохимические датчики (2 шт.)	0–5000 мг/м ³	концентраций (±2,5 мг/м³ (0–50 мг/м³) при работе датч	чика СО «низких» («погрешность 1»): ¹⁾ ±5 % (50–500 мг/м³) ника СО «высоких» («погрешность 2»): ¹⁾ ±5 % (120–5000 мг/м³)
или ^{2) 3)}	электрохимические датчики (2 шт.)	0–12500 мг/м ³	концентраций (±2,5 мг/м³ (0–50 мг/м³) при работе датч	чика СО «низких» («погрешность 1»): 1) ±5 % (50–500 мг/м³) ника СО «высоких» («погрешность 2»): 1) ±5 % (240–12500 мг/м³)
Оксид азота (NO)		0—400 мг/м ³	±3 мг/м ³ (0–60 мг/м ³)	±5 % (60–400 мг/м³)
или ²⁾	электрохимический датчик	0-2000 мг/м ³	±5 мг/м ³ (0–100 мг/м ³)	±5 % (100-2000 мг/м³)
или ²⁾		0-4000 мг/м ³	±10 мг/м ³ (0–200 мг/м ³)	±5 % (200–4000 мг/м³)
	только для исполнен	ия «Универсал»:		
или ²⁾	электрохимические датчики (2 шт.)	0–2000 мг/м ³	концентраций (±3 мг/м³ (0–60 мг/м³) при работе датч	чика NO «низких» («погрешность 1»): 1) ±5 % (60–400 мг/м³) пика NO «высоких» («погрешность 2»): 1) ±5 % (100–2000 мг/м³)
или ²⁾	электрохимические датчики (2 шт.)	0—4000 мг/м ³	при работе дат концентраций (±3 мг/м³ (0–60 мг/м³) при работе датч	чика NO «низких» («погрешность 1»): 1) ±5 % (60–400 мг/м³) ника NO «высоких» («погрешность 2»): 1) ±5 % (200–4000 мг/м³)

Продолжение таблицы

Определяемый	Принцип измерений	Диапазон измерений	Пределы допускаемой основной погрешности	
компонент			абсолютной	относительной
Диоксид азота (NO ₂)		0-100 мг/м ³	±4 мг/м ³ (0–80 мг/м ³)	±5 % (80-100 мг/м³)
или ²⁾	электрохимический датчик	0–500 мг/м ³	±6 мг/м ³ (0–120 мг/м ³)	±5 % (120–500 мг/м³)
или ²⁾	датчик	0-1000 мг/м³	±10 MГ/M³ (0-200 МГ/M³)	±5 % (200–1000 мг/м³)
Сумма оксидов азота (NO _X) в пе-	для NO 0–400 мг/м ³ и NO ₂ 0–100 мг/м ³	0-715 мг/м ³	±5 мг/м ³ (0–100 мг/м ³)	±5 % (100-715 мг/м³)
ресчете на NO_2 или $^{2)}$	для NO 0–2000 мг/м ³ и NO ₂ 0–500 мг/м ³	0–3550 мг/м ³	±8 мг/м ³ (0–160 мг/м ³)	±5 % (160-3550 мг/м³)
или ²⁾	для NO 0–4000 мг/м ³ и NO ₂ 0–500 мг/м ³	0-6650 мг/м ³	±12 мг/м³ (0–240 мг/м³)	±5 % (240–6650 мг/м³)
или ²⁾	для NO 0-4000 мг/м ³ и NO ₂ 0-1000 мг/м ³	0-7150 мг/м ³	±15 Mг/M ³ (0–300 Mг/M ³)	±5 % (300-7150 мг/м³)
или ⁴⁾	по расчету	HE HODWINDBAH	. ,	(300-7130 MI/M)
INICIA	только для исполнен	не нормировані ий 7 X и 8 X·	JI .	
или ²⁾	для NO 0–2000 мг/м ³ и NO ₂ 0–100 мг/м ³	0-3150 мг/м ³	±7 мг/м³ (0–140 мг/м³)	±5 % (140-3150 мг/м³)
	только для исполнен	ия «Универсал»:	1 -	
2)	для NO 0–2000 мг/м³	0.2450 / 3		чика NO «низких» («погрешность 1»): ¹⁾ ±5 % (100–715 мг/м ³)
или ²⁾	и NO ₂ 0–100 мг/м ³	0-3150 мг/м ³	при работе датч	ника NO «высоких» («погрешность 2»): ¹⁾ ±5 % (140–3150 мг/м³)
или ²⁾	для NO 0–2000 мг/м ³ и NO ₂ 0–500 мг/м ³	0–3550 мг/м ³	при работе дат концентраций ±6 мг/м³ (0–120 мг/м³) при работе датч	чика NO «низких» («погрешность 1»): 1) ±5 % (120–950 мг/м³) ника NO «высоких» («погрешность 2»): 1) ±5 % (160–3550 мг/м³)
или ²⁾	для NO 0–4000 мг/м ³ и NO ₂ 0–500 мг/м ³	0–6650 мг/м ³	концентраций (±6 мг/м ³ (0–120 мг/м ³) при работе датч	чика NO «низких» («погрешность 1»): 1) ±5 % (120–950 мг/м³) ника NO «высоких» («погрешность 2»): 1) ±5 % (240–6650 мг/м³)
или ²⁾	для NO 0–4000 мг/м³ и NO ₂ 0–1000 мг/м³	0—7150 мг/м ³	концентраций (±10 мг/м ³ (0–200 мг/м ³) при работе датч	чика NO «низких» («погрешность 1»): 1)

Продолжение таблицы

Определяемый	Принцип	Диапазон	Пределы допускаемой основной погрешности		
компонент	измерений	измерений	абсолютной	относительной	
Сернистый ангид-		0.200 / 3	±6 мг/м ³	±5 %	
рид (SO ₂)		0–300 мг/м ³	(0-120 мг/м ³)	(120-300 мг/м ³)	
, , ,	электрохимический	2 1 2	±15 мг/м ³	±5 %	
или ²⁾	датчик	0-5000 мг/м ³	$(0-300^{\circ} \text{ MF/M}^3)$	(300-5000 мг/м ³)	
2)			±25 мг/м ³	±5 %	
или ²⁾		0-15000 мг/м ³	(0-500 мг/м ³)	(500-15000 мг/м ³)	
	только для исполнения «Универсал»:				
		<u>.</u>	при работе датч	ика SO ₂ «низких»	
				«погрешность 1»): 1)	
			±6 мг/м ³	±5 %	
2)	электрохимические	0.5000 / 3	(0-120 мг/м ³)	(120-300 мг/м ³)	
или ²⁾	датчики (2 шт.)	0-5000 мг/м ³		ика SO ₂ «высоких»	
	. ,			«погрешность 2»): 1)	
			±15 мг/м ³	±5 %	
			(0-300 мг/м ³)	(300-5000 мг/м ³)	
				ика SO ₂ «низких»	
				«погрешность 1»): 1)	
			±6 мг/м ³	±5 %	
2)	электрохимические	2	(0-120 мг/м ³)	(120–300 мг/м ³)	
или ²⁾	датчики (2 шт.)	0-15000 мг/м ³		ика SO ₂ «высоких»	
	дат ижи (2 шт.)			«погрешность 2»): 1)	
			±25 мг/м ³	±5 %	
			_25 MI/M (0-500 мг/м³)	(500–15000 мг/м³)	
Соповолова			±3 MГ/M ³	±5 %	
Сероводород (H₂S) ⁷⁾		0-100 мг/м ³			
(Π ₂ 3) ′	250/550/4444	,	(0-60 мг/м³) ±5 мг/м³	(60-100 мг/м³) ±5 %	
или ²⁾	электрохимический	0-500 мг/м ³		±5 % (100-500 мг/м³)	
	датчик		(0-100 мг/м ³) ±10 мг/м ³	±5 %	
или ^{2) 7)}		0-1000 мг/м ³		_	
A			(0-200 мг/м³)	(200–1000 мг/м³)	
Аммиак (NH ₃) ⁷⁾	электрохимический	0-1000 мг/м ³	±20 MГ/M ³	±10 %	
` ",	датчик	-	(0-200 мг/м³)	(200–1000 мг/м³)	
Диоксид углерода		0-20 % (об.)	±0,5 % (o6.)	±10 %	
(CO ₂)		. ,	(0–5 % (06.))	(5–20 % (об.))	
или ²⁾	оптический	0–30 % (об.)	±0,75 % (oб.)	±10 %	
	датчик	. ,	(0-7,5 % (06.))	(7,5–30 % (об.))	
или ²⁾		0–60 % (об.)	±1,5 % (oб.)	±10 %	
		` '	(0–15 % (об.))	(15–60 % (об.))	
или ⁵⁾	по расчету	не нормировань		T 40.04	
Углеводороды по	оптический	0–5 % (об.)	±0,05 % (oб.)	±10 %	
метану (СН ₄)	датчик	2 70 (001)	(0-0,5 % (об.))	(0,5–5 % (об.))	
Углеводороды по	оптический	0–1,0 % (об.)	±0,02 % (об.)	±10 %	
пропану (C_3H_8)	датчик	3 2,3 70 (001)	(0-0,2 % (об.))	(0,2–1,0 % (об.))	
Углеводороды по	оптический	0-0,5 % (об.)	±0,01 % (oб.)	±10 %	
гексану (С ₆ Н ₁₄)	датчик	, , ,	(0–0,1 % (об.))	(0,1–0,5 % (об.))	
Температура га-	_	-20 °C	±3 °C	±1 %	
зового потока	термопреобразова-	+800 °C	(-20 °C+300 °C)	(300 °C800 °C)	
или ⁶⁾	тель типа «К»	-20 °C	±3 ℃	±1 %	
V 17 1V 1		+1000 °C	(-20 °C+300 °C)	(300 °C1000 °C)	
только для исполнений 7.X, 8.X и «Универсал»:					
	термопреобразова-	-20 °C	±3 °C	±1 %	
или ⁶⁾		+1100 °C	(-20 °C+300 °C)	(300 °C1100 °C)	
	тель типа «К»	11100 -C	(-20 C+300 °C)	(300 C1100 ·C)	

Продолжение таблицы

Определяемый	Принцип измерений	Диапазон	Пределы допускаемой основной погрешности		
компонент	измерении	измерений	абсолютной	относительной	
Избыточное давление (разрежение) газового потока. Дифференциальное давление	дифференциаль- ный полупроводни- ковый датчик	±(0–50) гПа	±0,25 гПа	-	
Скорость газово- го потока	напорная трубка типа Пито	4–50 м/с	±(1,0+0,05V), где V – измеренное зна- чение, м/с	-	
Коэффициент избытка воздуха (альфа)	по расчету	1,00–9,99	не норм	иированы	
Коэффициент потерь тепла	по расчету	0–99,9 %	не норм	ированы	
КПД сгорания топлива	по расчету	0–99,9 %	не нормированы		

Примечания:

- $^{1)}$ Метрологические характеристики, указанные для исполнения «Универсал» для каналов измерений CO, NO, SO₂ и NO_x действительны в зависимости от того, какой датчик («низких» или «высоких» концентраций) по каналам CO, NO и SO₂ используется в текущий момент измерений.
- ²⁾ Диапазон измерений зависит от исполнения газоанализатора и определяется заказчиком на этапе оформления заказа в соответствии с перечнем стандартных исполнений.
- $^{3)}$ Для указанного диапазона измерений возможна установка датчика CO с компенсацией по H_2 , что особо оговаривается заказчиком на этапе оформления заказа.
- $^{4)}$ Метрологические характеристики, указанные для канала NO_X , действительны только при наличии в газоанализаторе каналов измерения NO_X и NO_X . В случае, если в приборе установлен только датчик NO_X либо датчик NO_X не нормируются, так как определение суммы оксидов азота проводится в данном случае расчетным методом.
- $^{5)}$ Метрологические характеристики, указанные для канала CO_2 , действительны только при наличии в газоанализаторе датчика CO_2 . В случае, если в приборе отсутствует датчик CO_2 , характеристики по каналу диоксида углерода не нормируются, так как определение диоксида углерода проводится в данном случае расчетным методом.
- 6) Диапазон измерений по каналу температуры газового потока зависит от исполнения пробоотборного зонда и определяется заказчиком на этапе оформления заказа.
- 7) Кроме исполнения «Универсал».

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Техническая характеристика	Значение
Исполнение	- обыкновенное (модификации «Полар» и «Полар Т») - взрывозащищенное (модификации «Полар Ex» и «Полар Ex T»)
Маркировка взрывозащиты	1Ex ib [ia Ga] IIC T4 Gb X (исполнения без оптических датчиков) 1Ex d ib [ia Ga] IIC T4 Gb X (исполнения с оптическими датчиками)
Электропитание	от встроенной Li-ion аккумуляторной батареи или от сети переменного тока 220 В / 50 Гц через внешний блок питания / зарядное устройство
Способ отбора газовой пробы	с помощью встроенного электронасоса производительность 0,8 л/мин
Время работы без подзарядки аккумуляторной батареи	не менее 20 ч (при температуре воздуха от 0 °C до 45 °C) не менее 6 ч (при температуре воздуха от минус 15 °C до 0 °C) не менее 3 ч (при температуре воздуха от минус 40 °C до минус 15 °C)
Время заряда аккумуляторной батареи	не более 4,5 ч
Дисплей	графический, разрешение 128х64 пикселя, с подсветкой
Память результатов	встроенная, емкость 80 блоков (1600 записей)
Печать результатов	внешний компактный ИК-термопринтер
Вывод результатов на ПК	через RS-232 интерфейс на USB-порт компьютера
Габаритные размеры (ДхВхШ)	148х163х80 мм
Macca	не более 1,5 кг в зависимости от модификации
Диапазон рабочих температур	от 0°C до 45°C (модификации «Полар» и «Полар Ex») от минус 40°C до плюс 45°C (модификации «Полар Т» и «Полар Ex T»)

БАЗОВЫЙ КОМПЛЕКТ ПОСТАВКИ

Nº ⊓/⊓	Наименование	Кол-во
1	Газоанализатор «Полар», без принтера	1 шт.
2	Ручка пробоотборного зонда в комплекте с пробоотборным шлангом, длина шланга 2,5 м	1 шт.
3	Трубка пробоотборного зонда со встроенным термопреобразователем, в комплекте с упорным конусом, футляром для хранения и чехлом для транспортировки	1 шт.
4	Влагоотделитель	1 шт.
5	Внешний фильтр очистки пробы	1 шт.
6	Блок питания / зарядное устройство	1 шт.
7	Футляр с ремнем для переноски прибора, кожаный (для модификаций «Полар Т» и «Полар Ех Т» утепленный)	1 шт.
8	Сумка с ремнем для транспортировки прибора и принадлежностей, кожаная	1 шт.
9	Комплект документации (паспорт, руководство по эксплуатации, методика поверки (Приложение А к РЭ), свидетельство о первичной поверке, копии имеющихся сертификатов)	1 компл.

Примечание. Стандартно в базовый комплект поставки входит трубка пробоотборного зонда со встроенным термопреобразователем типа «К» (модель ТХА-01 по ТУ 95 2380-92) с длиной погружной части 740 мм и диапазоном измерений от минус 20 °C до 800 °C. Трубки другой длины (300, 1000, 1500 и 2000 мм), а также трубки с диапазоном измерений от минус 20 °C до 1000 (1100) °C поставляются по запросу.

ДОПОЛНИТЕЛЬНЫЕ ЭЛЕМЕНТЫ ПОСТАВКИ

№ п/п	Наименование
1	ИК-термопринтер с батарейками и комплектом запасной бумаги (уп. 10 шт.)
2	Металлокерамический фильтр для пробоотборного зонда, 10 мкм
3	Трубка пневмометрическая напорная типа Пито, длина от 750 до 2000 мм в комплекте с чехлом для хранения и транспортировки
4	Программа приема данных для ПК в комплекте с кабелем связи
5	Электрический блок осушки пробы
6	Градуировочные газовые смеси в баллонах под давлением (комплект)

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Саратов (845)249-38-78

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93